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EXECUTIVE SUMMARY 

In practice, dynamic traffic management is an effective solution to improve both traffic 

safety and operational efficiency due to its ability to continuously adapt to changing traffic 

conditions. For example, some operations strategies, such as variable speed limit (VSL) control, 

have been recognized as promising control methods since the emergence of Intelligent 

Transportation Systems (ITS) in the 1990s. Due to exposure to frequent inclement weather in 

Parley’s Canyon, the Utah Department of Transportation (UDOT) implemented a VSL zone 

(from MP 128.0 to MP 141.0 in both directions) using regulatory hybrid Changeable Message 

Signs (CMS). At the early stage, the CMS were operated with white digits and black 

backgrounds. However, during inclement weather, especially snowstorms, it was found that the 

visibility of those white digits that indicate speed limits has become a problem, when VSL 

control is particularly needed. Moreoever, during the summer season, strong sunlight can also 

affect visibility of the white digit speed limits. Since low visibility can invalidate the primary 

goal of VSL to improve safety, those CMS have been replaced by new ones with amber/yellow 

digits. The primary objective of this research project is to evaluate the effectiveness of the new 

CMS by performing a comprehensive before-and-after analysis. Moreover, the previous system 

that requires traffic engineers to manually change speed limits has been updated to an online-

based version with automatic operation. In this research, a detailed study of road safety and 

operation performance is also conducted to evaluate the new system’s performance and 

efficiency.  

In the first stage of this research, multiple field trips for video recordings were made to 

evaluate the CMS’ visibility from the driver’s view. Considering that inclement weather such as 

snowstorms and bright sunlight can affect sign visibility, field trips were made in both summer 

and winter. Then, by collecting other field data such as traffic flow information, displayed speed 

limit records, weather index data, and crash rates, road safety performance before and after the 

implementation of the new VSL system with amber CMS, are compared. Finally, machine 

learning (ML) models, including Artificial Neural Network (ANN) and Support Vector Machine 

(SVM), are developed to model crash frequency and severity along the I-80 corridor. Those 

safety models can help evaluate the road safety improvement for future VSL deployments. 
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Based on data anlaysis, it was found that the I-80 corridor’s average speed and speed 

variation have been reduced after the implementation of the new CMS. The driver compliance 

rate, which is the critical indicator of VSL system performance, has also been improved. In 

addition, the new CMS have resulted in significantly lower crash rates and severity. Crash 

severity decrease is detected mostly under adverse driving conditions (e.g., icy road survey, low 

visibility, etc.), which proves the effectiveness of the new CMS in improving traffic safety.  
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1.0  INTRODUCTION 

1.1  Problem Statement 

Inclement weather such as snowstorms and fog will change driver behaviors, reduce 

visibility, and consequently affect road traffic safety. According to existing traffic safety studies, 

adverse driving conditions have caused many traffic injuries and fatalities in the US during the 

past decade (Hassan et al., 2012). Moreover, physical road conditions such as grade, altitude, and 

curvature can also result in various unusual driving conditions. Therefore, providing road 

information and beforehand notification becomes crucial for safety concerns. In these cases,  

Changeable Message Signs (CMS) are often implemented with visibility detectors to warn the 

drivers about incidents and adverse road conditions (Federal Highway Administration, 2009; 

Hassan and Abdel-Aty, 2011; Hassan, Abdel-Aty and Oloufa, 2011; Hassan et al., 2012). 

Particularly, variable speed limit (VSL) is one CMS that will dynamically adjust the speed limit. 

Under low visibility conditions, VSL control has proven to be effective in reducing average 

traffic speed and speed variations, improving driver compliance with the posted speed limit, and 

mitigating traffic crash risks (Rämä, 1999; Sisiopiku and Professor, 2001; Bertini, Boice, and 

Bogenberger, 2006; Gonzales, Fontaine, and Dutta, 2019; Wu et al., 2019). Moreover, besides 

the improved safety and reduced crash risk, the deployment of VSL also helps save travel time 

and improve traffic operational efficiency in some cases (Lee, Hellinga, and Saccomanno, 2004; 

Abdel-Aty, Dilmore, and Dhindsa, 2006a). 

To increase safety and operational efficiency on a section of I-80 that experiences 

frequent periods of difficult weather, the Utah Department of Transportation (UDOT) has 

implemented a VSL zone (from MP 128.0 to MP 141.0 in both directions) using regulatory 

hybrid CMS. By MUTCD guidelines, amber/yellow LED digits are commonly used to represent 

warning notifications and white LED digits are used for traffic control and law enforcement 

(Federal Highway Administration, 2009). Hence, CMS on the I-80 corridor originally operated 

with white digits and black backgrounds to display speed limits. However, it was found that the 

visibility of those white digits decreased during inclement weather (e.g., snowstorms). This 

problem is compounded by the fact that this is when there will most likely be a need to activate 
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VSL controls to improve safety. Moreover, during the summer season, strong sunlight can also 

affect CMS visibility.  

To tackle this problem, UDOT started replacing those white digit CMS with new ones 

with amber digits in 2019. To study the effectiveness of those new CMS in improving sign 

visibility and roadway safety, this research project performs a comprehensive before-and-after 

analysis of VSL system performance based on the VSL records, onsite traffic detector 

information, historical traffic crash data, and field trip videotapes. The outcome of this project 

will assist UDOT in evaluating whether or not such implementation can indicate a demonstrable 

improvement of road safety under various weather and traffic conditions. 

In addition, the original VSL system required traffic engineers to manually change speed 

limits (usually started at 2-3 AM) based on the observed traffic speed. Considering tremendous 

labor is needed to carry out such a task, UDOT’s Traffic Operations Center (TOC) further 

developed an online-based system for automatic operations. To assist UDOT in evaluating the 

new system’s performance, another goal of this project is to analyze I-80 safety performance and 

the driver compliance rate before and after the new system implementation. Notably, this project 

will also examine the condition when traffic is too light to provide enough speed data to 

determine the VSL to be displayed. Then, based on the collected data, machine learning (ML) 

models, including Artificial Neural Network (ANN) and Support Vector Machine (SVM), are 

developed to model crash frequency and severity along the I-80 corridor. Those safety models 

can help evaluate the road safety improvement for future VSL deployments.  

1.2  Objectives 

The primary objective of this research project is to analyze road safety performance after 

implementing the amber CMS and the automatic VSL system. For this purpose, multiple field 

trips for video recordings are made to examine the visibility alteration from the driver’s view. 

Also, various real cases using VSL with amber CMS are reviewed to offer lessons learned 

regarding the effects of the amber legend on the safety and functionality of transportation 

networks. Then, using the occurrence data, the corridor’s weather index data, displayed speed 
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limits, and historical crash records, a comprehensive evalution of the new VSL system’s safety 

and operational performance is conducted. 

Moreover, using ML techniques, two safety models are developed to estimate crash 

severity and crash frequency. ANN and SVM classification modes are employed to classify the 

crash frequency level and severity based on road geometric features, traffic flow data, and 

driving conditions. The two developed models are further applied to study the effectiveness of 

new signs in road safety.  

1.3  Scope 

The research scope of this project includes: 

1. In the first task, this research performs a literature review of state practices of VSL 

with amber legend, studies about VSL control, and road safety evaluations. 

2. In the second task, this research conducts multiple field trips with video recordings, 

during both summer and winter seasons, to compare VSL system performance before 

and after the implementation of CMS with amber digits.  

3. In the third task, this research obtains supplementary data such as traffic flow 

information by highway sensors, historical crash records, VSL log data, and weather 

index in corresponding times. Those data are collected for Fall 2018 and 2019, and 

Winter 2019 and 2020 to study the VSL zone’s safety. 

4. In the last task, this research develops two safety models to estimate crash frequency 

and severity on the studied I-80 corridor and to confirm the effectiveness of the new 

system in improving road traffic safety.   
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2.0  LITERATURE REVIEW 

2.1  Overview 

In this chapter, existing VSL studies related to control algorithms, the purpose of use, and 

performance evaluation methods are reviewed. Moreover, state practices from multiple VSL 

applications are summarized to provide lessons learned. Finally, modeling approaches for road 

safety evaluation are explored, followed by a summary of the current research gap. 

2.2  VSL Guidance and State Practices 

When adverse driving conditions are detected, CMS such as speed warnings, regulatory 

information, and driving guidance are commonly used for improving road safety. A VSL system 

that dynamically adjusts the displayed speed limit has been recognized as one effective CMS. 

According to the MUTCD, hybrid CMS for regulatory purposes should be displayed with white 

LED digits and black backgrounds, while CMS with amber digits are often used for warning and 

temporary traffic control signs (Federal Highway Administration, 2009). However, the existing 

regulations may raise safety concerns due to the low visibility of white LED digits under some 

conditions. Particularly, VSL signs are deployed in many places, include the US and Europe 

based on different needs and control algorithms. Some VSL systems are used for improving road 

safety during inclement weather conditions, such as snowstorms, where the visibility of white 

LED digits could become a problem. Therefore, despite many existing studies showing that 

traffic safety, congestion, and even pollution have decreased with VSL, the control system’s 

performance could be significantly downgraded when the displayed speed limits are not quite 

visible. 

In many existing VSL applications, weather-related control algorithms first evaluated the 

road segment visibility based on traffic detector data, friction sensor information, or human 

observations, and then determined when to activate the VSL control (Chang and Kang, 2008; 

Katz et al., 2012; Lyu et al., 2017). Depending on the system architecture, a VSL system for 

weather-related control can consider different variables and can be automated, semi-automated, 

or manual. According to the Federal Highway Administration (FHWA), the VSL used for wet 
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weather conditions often considered design speed, operating speed, minimum speed, roadway 

geometrical characteristics, and sight distance from the sensors. The system would check for the 

road weather condition and use the 85th percentile speed and the road design speed limit to 

determine the dynamic speed limits to be displayed. In cases where the determined dynamic 

speed limit is less than the 85th percentile speed, VSL control can be temporarily deactivated and 

the speed limit regulation for normal conditions would be applied (Katz et al., 2012). In other 

cases, VSL can be operated to provide advisory speeds for traffic operational efficiency 

considerations (Texas A&M Transportation Institute, 2017). 

In a recent VSL deployment in Wyoming, some modifications to the FHWA suggested 

algorithm have been made to reduce the crash risk (Lee et al., 2013). Except for the speed data 

mentioned earlier, the system also took Road Weather Information System (RWIS) data as input. 

The data were fused with other information to determine the speed limit upperbound. Moreover, 

the VSL system adopted a multi-stage control algorithm. In the first stage, the obtained 85th 

percentile traffic speed and vehicle counts were used to suggest a new speed limit. Then, by 

using some subfilters and a visibility threshold filter in the second stage, the speed limit would 

be determined by rounding it to the 85th percentile. The difference between the speed limits in 

these two stages should not be greater than 15 mph. Otherwise, the one from the first stage 

would be implemented.  

2.3  VSL Control for Traffic Safety  

VSL was initially designed to reduce speed differences and harmonize traffic flow on 

hazardous highway segments, lower rear-end collision rates, and improve traffic safety. Most 

existing studies focus on improving the speed compliance rate and reducing crash severity with 

VSL control implementations (Piao and McDonald, 2008; Sui and Young, 2013; Abdel-Aty and 

Wang, 2017; Ding and Gou, 2018). In those studies, road safety improvement is highly correlated 

to the driver’s level of compliance. Also, since the compliance rate becomes critical during 

irregular situations and congested conditions, the safety improvement by VSL could be more 

significant in an overcrowded condition (Habtemichael and de Picado Santos, 2013). Using the 

PARAMICS microsimulation program, Abdel-Aty et al. (2009) found that the implementation of 
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variable speed limits successfully reduced rear-end and lane-change crash risks in low-volume 

traffic conditions. 

Other studies model crash rates based on variables such as geometric design, flow 

characteristics, and empirical data (Promothes et al., 2006b; Ding and Gou, 2018). Based on their 

results, traffic flow speed variation and distribution could be effective indicators of VSL’s 

impact on traffic safety. The average speed collected by the detector is an indicator of the 

driver’s response to the speed limit. Besides, the difference in average speed and displayed speed 

is another parameter to show the drivers’ behaviors in response to VSL. Speed variance, 85th 

percentile speed, travel time, and high-speed rates are other measurements of effectiveness for 

assessing VSL performances (For et al., 2003; Lyles et al., 2004; Sui and Young, 2013). 

Particularly, studies have proved that drivers’ compliance is the primary measurement directly 

related to road safety (Hellinga and Mandelzys, 2011). The compliance rate is also relevant to 

the speed limit shown by VSL, where the compliance rate decreases as the speed increases 

(Boateng et al., 2019). Moreover, traffic flow information is also used to develop crash level 

models (Lee, et al., 2006), where most studies show that incident rates will decrease significantly 

after VSL implementation, especially in severe conditions. Simulation is another approach to 

predicting the crash rate after VSL implementation and analyzing safety measurements (Piao and 

McDonald, 2008; Giles, 2004). 

Using model-based control logic, Talebpour et al. (2013) proposed a reactive rule-based 

speed harmonization algorithm to delay or even prevent traffic breakdowns, which improved 

both safety and efficiency in a microscopic simulation of a hypothetical freeway segment. They 

assumed that connected vehicle technology was available and able to obtain each vehicle’s 

trajectory to facilitate early detection of shock waves. To reduce crash risk and improve freeway 

safety, Yang and Lu (2014) developed an optimal VSL control system to smooth speed reduction 

before traffic reaches work zone bottleneck areas. 

2.4  VSL Control for Traffic Operation 

Recently, it was discovered that VSL might also have the potential to mitigate traffic 

congestion and improve traffic operational efficiency in freeway bottleneck sections (Texas 
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A&M Transportation Institute, 2017; Lu and Shladover, 2014). Through properly displayed and 

dynamically changed speed limits based on traffic conditions, it is believed that VSL can smooth 

the flow transition between upstream and downstream segments, preventing shockwaves, and 

mitigating or at least postponing congestion (Grumert et al., 2018). Hegyi et al. (2005) adopted a 

model-predictive control approach to determine the optimal speed limit, and observed a nearly 

20% travel-time reduction in their simulation experiments. Based on the observed effect of VSL 

on aggregated traffic flow behavior summarized by Papageorgiou et al. (2008), Carlson et al. 

(2010) proposed an open-loop, integrated, optimal control framework to coordinate ramp 

metering with VSL. Their simulation results showed an improvement in total travel time of 15%. 

And then, Carlson et al. (2011) also extended a 2-loop local feedback controller to decide VSL 

speed and obtained comparable results in a METANET simulation environment (Messmer and 

Papageorgiou, 1990), which might face difficulties in practical field implementations. Other 

researchers, such as Hadiuzzaman and Qiu (2013) and Yang et al. (2015), reported a significant 

reduction in total travel time with VISSIM simulations.  

Unlike the simulation-based evaluation of VSL research, variable speed limit field 

deployment experiments in the Netherlands (Smulders 1990) and Spain (Soriguera et al., 2015) 

showed no significant improvement in roadway capacity. However, in a field evaluation on the 

Dutch A12 Freeway (Hegyi and Hoogendoorn, 2010), VSL was shown to be effective, resolving 

80% of solvable shockwaves, but its efficiency improvement in travel time was not significant. 

Weikl et al. (2013) analyzed data obtained from the German Autobahn A99 Freeway near 

Munich and concluded that VSL could reduce shockwave speed and balance lane distribution at 

the cost of slightly reduced capacity. In the United States, Chang et al. (2011) reported successful 

implementation of an integrated VSL and travel-time information system on the Maryland Route 

100 Highway near Coca-Cola Drive (Hanover, Maryland), finding that VSL alone improved 

travel time by 7.5% and that, paired with a real-time travel-time display, it realized an 

improvement of 26.4%. 

2.5  Road Safety Evaluation Models 

In the literature, many studies used system theories and systematic description 

frameworks to perform a road safety assessment. Those developed models used a logical relation 
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between road features and other factors influencing safety (Goh and Love, 2012; Hughes et al., 

2015). Moreover, the impact of the road or human features on crashes was used to set policies 

and was applied in road designs (Elvik, 2003). Developed numerical safety models typically are 

based on statistical techniques to predict crash frequency and severity. Road geometric design 

and its consistency, traffic flow characteristics, and driving conditions were considered in 

statistical methods (Hauer, 2004; Wang et al., 2011; Zheng et al., 2020). Statistical models, 

including regression models and multilevel models, have been used to estimate crash frequency 

in the literature (Lord and Mannering, 2010), and logit and probit models have been used for 

crash severity estimation (Savolainen et al., 2011).  

However, predefined relationships and assumptions in statistical methods may contradict 

the reality and confine the application of such methods (Silva, Andrade, and Ferreira, 2020). 

Accordingly, machine learning (ML) methods came in handy which do not need any pre-

assumptions. ML-based safety models will be trained and fitted by input data. ML methods 

evaluate road safety by crash frequency, severity, or a combination of both. Artificial neural 

network (ANN) is one ML method used for both crash frequency and severity estimations. ANN 

uses the feature vector, including the variable related to the crash rate, to predict the desired 

safety factor. The features will be used as an input for each layer (hidden layers) using optimized 

weight and fitted function to estimate the output (Xie, Lord, and Zhang, 2007; Zeng et al., 2016). 

Other ML methods such as decision tree, support vector machine (SVM), and nearest neighbor 

classification (KNN) are also used for crash frequency predictions (Chang, 2005). 

To develop a model to estimate crash severity in a road segment, ML methods can be 

developed in the way of classifying crash severity levels. In the literature, ANN classification 

models have improved performances using clustering classification (Alikhani et al., 2013). 

Studies have proved that ML models will perform better compared to statistical methods in 

safety assessment (Silva et al., 2020). Also, ANN is proved to be the most suitable among all ML 

models in safety evaluations, which still depend on the data structure and variables available to 

feed the model (Chang, 2005). Also, the distribution of data correlations and optimization 

methods to find the best parameters can affect the model’s accuracy and fitting (Zeng and 

Huang, 2014; Pan et al., 2017). 
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2.6  Summary 

This chapter reviewed existing studies and state practices related to VSL control 

algorithm development, system deployment, and simulation evaluations. VSL signs can be used 

for various occasions and conveying dynamic information about the road for safer traffic 

management. Depending on the control objective, VSL control algorithms can be variable and 

can be presented differently. This chapter also reviewed safety models in the literature and 

concluded ML models could be a better option for this research. 
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3.0  VSL SIGNING VISIBILITY STUDY 

3.1  Overview 

As described in previous chapters, VSL implementation can bring significant road safety 

benefits by reducing potential crash frequency and severity, especially under adverse driving 

conditions. Moreover, driver compliance with the posted speed limit can greatly affect the 

effectiveness and efficiency of the VSL control system. Hence, ensuring the visibility of VSL 

signs (CMS) to drivers becomes a critical task for improving the compliance rate. Due to 

frequent inclement weather (e.g., snowstorms) in Parley’s Canyon during the winter, the original 

VSL signs with white LED digits on the I-80 freeway corridor are not quite visible to drivers. 

Strong sunlight during the summer season can also affect signage visibility. To tackle this 

problem, UDOT started to replace them with new signs with amber digits starting in Fall 2019. 

To compare the visibility of original and new signs, this chapter presents some video snippets 

recorded by vehicle onboard cameras during field trips.     

3.2  Field Trip Recordings 

Recording road videos using vehicle onboard cameras is the best way to demonstrate the 

VSL signs’ visibility before and after the CMS replacement. Therefore, the research team 

conducted a few field trips with video recording during both summer and winter seasons. 

Considering strong sunlight can affect CMS’ visibility, the summer field trips were made in June 

and July. Moreover,  in the mornings (8 AM –10 AM) and afternoons (4 PM – 6 PM), due to the 

sun’s position in the sky, the CMS display angle, and drivers’ sight height, the sun’s reflection is 

directed to the driver’s eyes which makes the VSL indiscernible for drivers. Based on the 

analysis by SunEarthTools, the sun’s position in 2019 is depicted in Figure 3.1. According to the 

sun’s largest angle with Earth, the videos are recorded during both morning and afternoon hours 

in July, and each period will greatly affect sign visibility in one travel direction. The VSL zone 

in  I-80 towards the east of Salt Lake City aligns with the east-west directions. Hence, it is 

expected that the visibility along the east/west direction in the morning/afternoon will decrease 
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the most. Besides, the visibility may be also affected by driving lane locations due to the change 

of sight angle to the CMS. 

 

Figure 3.1 The sun position during the year of 2019 

Recognizing those impact factors, field trips in both east and west directions, were made 

from MP 128.0 to MP 141.0 of the I-80 freeway for video recordings. Notably, those videos 

were taken by driving on all freeway lanes and during both morning and afternoon hours. Some 

video snippets are presented in the following sections for comparison. 

3.2.1  Equipment 

For data collections, a Vantrue N2 Pro Dual 1080P Dash Cam placed on a passenger car is 

used to record front view videos when driving on the studied I-80 corridor. Table 3.1 summarizes 

the data collection details, including the MP recorded, driving speed, recorded time, and recorded 



 

14 

lane. The same data collection strategy is adopted for video recording during both summer and 

winter seasons. However, it should be noted that the amber CMS were fully installed in September 

2019, and the corresponding study of amber sign visibility is only available after that date.  

 

Table 3.1 Data collection features for video recording on field trips 

Route I80-W I80-E 

MP Recorded 128-141 128-141 

Driving Speed 65 mph 65 mph 

Recorded Time 8-10AM/4-6PM 8-10AM/4-6PM 

Recorded Lanes 1,2,3 1,2,3 

 

3.3  Video Snippets for VSL Sign Visibility Study 

3.3.1  Visibility of VSL Affected by Direct Sunlight 

On road trips within the I-80 VSL zone, 8 signs in the east direction and 7 VSL signs in 

the west direction were captured by the vehicle onboard camera. After reviewing the obtained 

videos and checking their relative visibility, all VSL signs are classified into two groups: VSL 

with low visibility and VSL with good visibility. Figures 3.2 to 3.13 show the video snippets of 

each white legend VSL that were collected at different times of day, driving in different lanes, 

and in different directions during the summer season. The VSL with relatively low visibility are 

displayed with red tags and those with good visibility are indicated by blue tags. Based on the 

visibility study, it can be observed that the direct sunlight reflection by the VSL, toward the 

driver’s sight, can greatly affect the visibility of those VSL with white legends. Also, several 

VSL signs have very low visibility in all recorded videos due to lack of power or other issues.  
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Figure 3.2  Video snippet (east approach, 1st Lane, white legend, morning, summer) 

 

Figure 3.3 Video snippet (east approach, 1st Lane, white legend, afternoon, summer)   

 

Figure 3.4 Video snippet (east approach, 2nd Lane, white legend, morning, summer) 
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Figure 3.5 Video snippet (east approach, 2nd Lane, white legend, afternoon, summer) 

 

Figure 3.6 Video snippet (east approach, 3rd Lane, white legend, morning, summer) 

 

Figure 3.7 Video snippet (east approach, 3rd Lane, white legend, afternoon, summer) 
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Figure 3.8 Video snippet (west approach, 1st lane, white legend, morning, summer) 

 

Figure 3.9 Video snippet (west approach, 1st lane, white legend, afternoon, summer) 

 

Figure 3.10 Video snippet (west approach, 2nd lane, white legend, morning, summer) 
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Figure 3.11 Video snippet (west approach, 2nd lane, white legend, afternoon, summer) 

 

Figure 3.12 Video snippet (west approach, 3rd lane, white legend, morning, summer) 

 

Figure 3.13 Video snippet (west approach, 3rd lane, white legend, afternoon, summer) 
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More specifically, video shows that sunlight impacts the visibility of the east approach 

signs more during morning hours while it affects the visibility of the west approach signs more 

during afternoon hours. To compare the VSL visibility with white and amber legends during the 

summer, several other field trips were made in summer 2020 for additional video recording. 

Those field trips were made within the I-80 VSL zone in both east and west directions and in 

both morning hours (9-11 AM) and afternoon hours (3-5 PM). Figures 3.14 to 3.25 show the 

video snippets of each VSL. Compared with the snippets in Figures 3.2 – 3.13, the visibility of 

the new VSL signs with amber legends is significantly improved, which proves the effectiveness 

of the new system deployed by UDOT.  

 

Figure 3.14 Video snippet (east approach, 1st lane, amber legend, morning, summer) 

 

Figure 3.15 Video snippet (east approach, 1st lane, amber legend, afternoon, summer) 
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Figure 3.16 Video snippet (east approach, 2nd lane, amber legend, morning, summer) 

 

Figure 3.17 Video snippet (east approach, 2nd lane, amber legend, afternoon, summer) 

 

Figure 3.18 Video snippet (east approach, 3rd lane, amber legend, morning, summer) 
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Figure 3.19 Video snippet (east approach, 3rd lane, amber legend, afternoon, summer) 

 

Figure 3.20 Video snippet (west approach, 1st lane, amber legend, morning, summer) 

 

Figure 3.21 Video snippet (west approach, 1st lane, amber legend, afternoon, summer) 
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Figure 3.22 Video snippet (west approach, 2nd lane, amber legend, morning, summer) 

 

Figure 3.23 Video snippet (west approach, 2nd lane, amber legend, afternoon, summer) 

 

Figure 3.24 Video snippet (west approach, 3rd lane, amber legend, morning, summer) 
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Figure 3.25 Video snippet (west approach, 3rd lane, amber legend, afternoon, summer) 

The snippets of amber legend signs show that visibility has improved significantly in 

direct sunlight. However, several white legend signs had power issues, which reduced the legend 

brightness and, correspondingly, the visibility. Hence, a fair comparison is conducted between 

those fully lighted signs with white and amber legends. The results indicate that signs are more 

visible to drivers for longer sight distances with the amber legend. During field trips, it was 

found that the direct sunlight made white LED digits hard to discern, unless at a close distance. 

Hence, the sight distance has particularly improved with the amber legends, which gives drivers 

more time to react to the displayed speed limit. 

3.3.2  Visibility of VSL after Snowstorms 

The same data collection strategy is applied for video recording after a snowstorm within 

the I-80 VSL zone, for both east and west approaches, and during both morning (9-10 AM) and 

afternoon (3-5 PM) hours. As shown in Figures 3.26 – 3.37, the visibility of amber legend VSLs 

is not significantly reduced despite the road’s low visibility due to fog and snow. Since the data 

collections were conducted in foggy weather, the outputs can also prove the necessity of 

implementing amber LED digits to display speed limits. Notably, as the replacement of VSL 

signs were completed in the fall of 2018 and this project was started in the late spring of 2019, no 

field trip has been made to study the visibility of white legend VSLs during the winter season.  
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Figure 3.26 Video snippet (east approach, 1st lane, amber legend, morning, winter) 

 

Figure 3.27  Video snippet (east approach, 1st lane, amber legend, afternoon, winter) 

 

Figure 3.28  Video snippet (east approach, 2nd lane, amber legend, morning, winter) 
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Figure 3.29  Video snippet (east approach, 2nd lane, amber legend, afternoon, winter) 

 

Figure 3.30  Video snippet (east approach, 3rd lane, amber legend, morning, winter) 

 

Figure 3.31  Video snippet (east approach, 3rd lane, amber legend, afternoon, winter) 
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Figure 3.32 Video snippet (west approach, 1st lane, amber legend, morning, winter) 

 

Figure 3.33  Video snippet (west approach, 1st lane, amber legend, afternoon, winter) 

 

Figure 3.34  Video snippet (west approach, 2nd lane, amber legend, morning, winter) 
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Figure 3.35  Video snippet (west approach, 2nd lane, amber legend, afternoon, winter) 

 

Figure 3.36  Video snippet (west approach, 3rd lane, amber legend, morning, winter) 

 

Figure 3.37  Video snippet (west approach, 3rd lane, amber legend, afternoon, winter) 
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Based on the review of recorded videos in winter, it can be concluded that amber legend 

makes the VSL signs much more visible to drivers. The LED digits indicating speed limits are 

quite visible from a reasonable distance, despite the lower road visibility due to inclement weather. 

However, it is suggested that CMS alerts about road conditions or flashing amber lights should be 

added to the system for improving winter road safety (Lee et al., 2013). 

3.4  Summary 

This chapter studied the visibility of VSL before and after the installation of amber signs 

by reviewing the recorded road videos during both summer and winter seasons. Based on the 

comparison of the video snippets, it can be found that original white legend VSLs have reduced 

visibility in direct sunlight during the summer. The new amber legend VSLs have much improved 

visibility in the summer. Moreover, the visibility of amber legend is not significantly affected by 

inclement weather, such as fog and snow, in the winter. 
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4.0  COMPREHENSIVE DATA ANALYSIS 

4.1  Overview 

Through field investigation with video recordings, the last chapter shows that the 

visibility of the new amber VSL signs is significantly improved. Hence, it is expected that the 

driver compliance rate to VSL and the associated road safety performance will also be improved. 

To prove such a hypothesis, this chapter aims to obtain additional numerical data, including road 

sensor information, historical VSL log (i.e., displayed speed limits), and crash records, to 

conduct a more comprehensive analysis. Particularly, a comparison will be conducted to evaluate 

both road safety and efficiency before and after the VSL sign replacements.  

4.2  Data Description 

As the primary purpose of using VSLs on the studied I-80 corridor is to alert drivers to 

drive slower during inclement weather, it is critical to study whether the driver compliance rate 

improved after the implementation of amber legend VSLs. To satisfy this need, the first collected 

dataset includes roadside stationary detector data (i.e., speeds and flows). Moreover, another 

direct measurement of effectiveness (MOE) for VSL is the resulting crash frequency and 

severity. Hence, this research also obtained historical crash data on the I-80 corridor. 

Considering weather conditions could play a key role in affecting both the VSL compliance rate 

and road safety performance, weather index data during the study period were also collected.  

More specifically, this research collected biweekly data in four months, October 2018, 

October 2019, January 2019, and January 2020, which spans the periods before and after the 

deployment of new VSL signs.  Driver compliance rates to VSL can be calculated by comparing 

the time-dependent mean speed profile to displayed speed limits. Hence, an analysis is conducted 

to examine whether improved sign visibility can result in improved compliance rates. In terms of 

road safety evaluation, the crash records are studied with consideration given to weather impacts. 
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4.3  Traffic Data Analysis 

By collecting road traffic detector data and historical VSL log data, this section focuses 

on the traffic performance analysis. As aforementioned, the driver compliance rate to VSL has 

been recognized as a useful MOE for VSL. In this research, the compliance rate is measured by 

the ratio of drivers who drive no more than 10 mph over displayed speed limits. This is because 

the majority of Utah drivers tend to drive faster (e.g., 5-10 mph) than the speed limit, based on 

our analysis of the general speed profile for the Utah freeway network. Based on the compliance 

rate definition, Tables 4.1 – 4.2 present the calculated driver compliance rates by VSL systems 

with different legend colors during different times of the year. Based on the results, it can be 

observed that compliance rates haven't improved significantly in October after the deployment of 

the new amber signs. The reason might be that traffic speed is quite steady when the driving 

condition is good in October and the low visibility of several VSL signs could have little impact 

on driver behaviors. However, when visibility is affected most (e.g., in wintertime), the 

compliance rate, with the amber signs, has improved by 9% on average. The improvement is 

more than 20% at the location of sensor 100616. 

Table 4.1  Driver compliance rate comparision for eastbound flows 

Legend Color White Amber White Amber 

                Date 

Sensor ID 
January 19 January 20 October 18 October 19 

100389 0.96 0.95 0.98 0.97 

100619 0.80 0.91 0.88 0.78 

100599 0.91 0.94 0.98 0.94 

100616 0.70 0.85 0.66 0.67 

100430 0.91 0.95 0.94 0.89 
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Table 4.2  Driver compliance rate comparision for westbound flows 

Legend Color White Amber White Amber 

                Date 

Sensor ID 
January 19 January 20 October 18 October 19 

100619 0.80 0.91 0.88 0.78 

100599 0.91 0.95 0.98 0.94 

100616 0.70 0.86 0.66 0.67 

100618 0.82 0.93 0.84 0.85 

100430 0.91 0.94 0.92 0.92 

 

In the process of data analysis, this research found that driver compliance rates are much 

higher under congested traffic conditions. This is because the high density and slow speed traffic 

pattern can prevent vehicles from driving too fast. Moreover, from the road safety perspective, 

crash frequency and severity have been significantly decreased in those cases as well. 

Considering the primary objective of implementing VSL on the I-80 corridor is to slow down 

traffic, it is more critical to study driver compliance rates under uncongested conditions. To 

satisfy such a need, Table 4.3 and Table 4.4 summarize the compliance rate for both eastbound 

and westbound uncongested flows. Compared with the results shown in Table 4.1 and Table 4.2, 

it can be observed that compliance rates under uncongested conditions are smaller than the 

average value of the study period. 

Table 4.3  Driver compliance rate comparision for eastbound uncongested flows 

Legend Color White Amber White Amber 

                Date 

Sensor ID 
January 19 January 20 October 18 October 19 

100389 0.95 0.92 0.66 0.89 

100619 0.60 0.53 0.57 0.54 

100599 0.63 0.60 0.64 0.55 

100616 0.55 0.53 0.56 0.53 

100430 0.95 0.92 0.66 0.89 
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Table 4.4  Driver compliance rate comparision for westbound uncongested flows 

Legend Color White Amber White Amber 

                Date 

Sensor ID 
January 19 January 20 October 18 October 19 

100619 0.60 0.53 0.56 0.55 

100599 0.63 0.60 0.63 0.56 

100616 0.55 0.53 0.55 0.55 

100618 0.62 0.58 0.60 0.57 

100430 0.60 0.61 0.63 0.57 

Besides the examination of driver compliance rates, analyzing the profile of average 

traffic speeds against the displayed speed limits can also help study drivers’ responses to the 

VSL. This is due to the driver compliance rate being defined as the proportion of vehicles that 

speed no more than 10 mph over the displayed speed. Average traffic performance in response to 

the VSL would not be fully captured by the compliance rate study. 

 Therefore, Figures 4.1 – 4.9 present the time-dependent traffic mean speeds and 

displayed speed limits over the study periods. Notably, red dash lines in all figures indicate the 

change of speed limit over time, based on the VSL log data at UDOT’s TOC. Gray lines show 

the time-dependent average traffic speed when white legend VSLs were used and blue lines 

represent the average speed profile after the amber legend VSLs were deployed. Based on the 

results, it can be observed that the average traffic speed lines are closer to the VSL lines after the 

installation of new VSL signs, especially when the speed limits dropped. Hence, it can be 

concluded that more traffic is following the VSL after sign visibility is improved. 
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Figure 4.1  Hourly average speed vs. displayed speed limit on I-80 eastbound (Fall 2018) 

 

Figure 4.2  Hourly average speed vs. displayed speed limit on I-80 Westbound (Fall 2018) 
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Figure 4.3  Hourly average speed vs. displayed speed limit on I-80 eastbound (Fall 2019) 

 

Figure 4.4  Hourly average speed vs. displayed speed limit on I-80 westbound (Fall 2019) 
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Figure 4.5  Hourly average speed vs. displayed speed limit on I-80 eastbound (Winter 2019) 

 

Figure 4.6  Hourly average speed vs. displayed speed limit on I-80 westbound (Winter 2019) 
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Figure 4.7  Hourly average speed vs. displayed speed limit on I-80 eastbound (Winter 2020) 

 

Figure 4.8  Hourly average speed vs. displayed speed limit on I-80 westbound (Winter 2020) 
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4.4  Safety Data Analysis 

The second type of data that can help evaluate the impact of VSL signs with higher 

visibility is the crash record. In this research, crash rates within the I-80 VSL zone have been 

reviewed before and after the VSL sign replacement to determine whether the amber legend 

could positively impact road safety. Based on crash data analysis, there is about a 50 percent 

decrease in crash numbers after installing the new VSL signs. The numbers of recorded crash 

incidents over different months are depicted in Figure 4.9, where data collected in October 2018 

and January 2019 are related to white VSL legends, and the data obtained in October 2019 and 

January 2020 are impacted by amber VSL legends. 

 

Figure 4.9  Crash rate of I-80 corridor before and after the new VSL installation 

Road conditions, sign visibility, and inclement weather are also factors that can greatly 

affect road safety performance. This includes the light condition, weather condition, and road 

surface condition, as shown in Figures 4.11 - 4.12. The results indicate that in both periods, road 

setting and driving conditions were at high risk, which proves that the reduction in incidents results 

from improved sign visibility. 
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Figure 4.10  Crash rate analysis by road conditions (white legend) 

 

Figure 4.11  Crash rate analysis by road conditions (amber legend) 

More detailed speed profiles under adverse driving conditions are evaluated to study 

drives’ behaviors in response to reduced speed limits. Because the I-80 corridor experiences 

multiple snowstorms and lower visibility issues in the wintertime, safety-oriented speed guidance 

is needed for drivers. By investigating the weather index of the corridor in January 2019 and 

2020, it is found that most traffic crashes were caused by reduced visibility and wet road surface 

conditions. Figure 4.13 and Figure 4.14 demonstrate the distribution of the weather conditions. 

The weather road (WF) index indicates the driving status of the road segment, and as it gets 

below zero, the driving situation is riskier. The results show that there are multiple occasions in 

winter where road conditions becoms precarious. Yet, lower visibility at the same time worsens 

the driving conditions for drivers.  
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Figure 4.12  Weather condition of the I-80 corridor in January 2019 

 

Figure 4.13  Weather condition of the I-80 corridor in January 2020 
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The driver compliance rate study implies that the new VSL system has improved the 

effectiveness of speed limit enforcement in insecure conditions. A more detailed speed profile of 

the road, as shown in Figure 4.14 and  Figure 4.15, further proves this fact. Hence, the reduced 

speed numbers demonstrate the safety performance of the corridor. 

 

Figure 4.14  Detailed sample of speed profile with inclement weather (white legend) 

 

Figure 4.15  Detailed sample of speed profile with inclement weather (amber legend) 
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Based on the analysis of the recorded data, it can be concluded that safety and driver 

compliance rates have been enhanced due to the improved visibility of the new VSL signs. The 

conversion from white to amber LED legends has had a notable positive impact on visibility and 

traffic flow compliance. The decrease in traffic flow average speed and the increase of drivers’ 

tendency to follow the speed limit can be attributed primarily to the change of the VSL legend 

color from white to amber. Furthermore, in winter, when higher precipitation results in a slick 

road surface and reduced visibility, the driver compliance rates were increased. The reduction in 

crash rates also indicated improved VSL visibility directly mitigates the adverse effects of the 

road’s low visibility and unusual weather conditions. The detailed description of crash data 

showed that most crashes occur due to poor lighting conditions or slushy road surfaces in this 

corridor. The former conditions also hold for crashes that occurred in the winter before and after 

the new VSL sign installations. Keeping in mind that comparisons were made with similar road 

conditions and months, the decline in crash numbers can be positively correlated to the improved 

visibility of the amber legends. 

4.5  Summary 

This chapter focused on evaluating the impact of amber legend VSLs on road traffic 

speed profile and safety performance. For evaluation of traffic speeds in response to VSL, 

environmental data, VSL log historical data, and crash records were examined. First, driver 

compliance rates were calculated to study drivers’ reactions to new VSL signs. The results 

demonstrated that average speeds have decreased, and speed variations from displayed speed 

limits have lowered. Moreover, the hourly average speeds are depicted versus the speed, which 

further proved the improved compliance rates. Finally, the analysis of crash records showed that 

new signs can improve safety as crash frequency decreased and became less severe under 

adverse driving conditions. In conclusion, the new signs have increased the road safety of the 

studied I-80 corridor.   
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5.0  SAFETY EVALUATION MODEL 

5.1  Overview 

Safety models are developed in this chapter to evaluate crash frequency and severity on 

the I-80 corridor using the occurrence data, weather index, and crash records. ML technique is 

leveraged to train model parameters based on features that contribute to the road safety level. By 

adding the variable of VSL legend color to the model, the safety model results can show the 

impact of improved visibility on crash severity. 

5.2  Training Data 

The studied data include recorded traffic flow data by detectors, displayed speed limits of 

VSL, weather index data, and historical crash records. Two weeks of data were collected in one 

month of fall (October 2018 and 2019), summer (July 2019), and winter (January 2019 and 2020), 

before and after the implementation of new signs. As the road condition, environment condition, 

and traffic congestion level will influence road safety, these variables have been used as an input 

in the safety evaluation model. Since this study aims to study the impact of the improved visibility 

of VSL on road safety, the VSL legend color is also considered a feature for safety assessment. 

In this study, some explanatory variables are transformed into binary variables. For 

example, in terms of the VSL legend color, the white legend is represented by “0” and the amber 

legend is represented by “1”. All traffic state information, including flows and speeds, is 

aggregated hourly for the model development. A summary of the dataset and statistic distribution 

of each variable is provided in Table 5.1. 
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Table 5.1  Statistical summary of the collected datasets 

Feature Mean SD Min Max 
     

Speed 63.61 7.23 10.16 78.36 

Speed Limit 64.15 3.74 35 65 

Postmile   127.39 141.28 

Visibility 9.51 1.73 0.14 10 

WRWI 0.01 0.12 -0.41 1.6 

Surface Status 1.32 1.34 1 12 

Surface Grip 0.8 0.07 0.18 0.82 

Crash Severity 0.01 0.12 0 4 

Frequency 0.01 0.09 0 3 

# Vehicles 0.01 0.15 0 4 

VSL Legend Color   0 1 

No Lanes 2.74 0.76 2 4 

 

To determine which variables should be considered as the model development input, the 

correlation between attributes needs to be analyzed. Using the Pearson correlation analysis 

method, the correlation of each variable pair is evaluated and the obtained correlation 

coefficients are presented in Table 5.2. Notably, even though there is a low correlation between 

crash severity and VSL legend color, the negative coefficient demonstrates that amber legend has 

decreased the severity. 

Table 5.2  Pearson correlation value between variables  

Variable Severity Frequency # Vehicles Legend 

Speed -0.043 -0.044 -0.026 -0.068 

Speed Limit -0.063 -0.060 -0.056 -0.044 

Postmile -0.002 -0.010 -0.001 0.002 

Frequency -0.061 -0.054 -0.048 -0.150 

# Vehicles 0.070 0.058 0.057 0.067 

Visibility 0.139 0.148 0.117 0.107 

WRWI -0.065 -0.064 -0.058 -0.124 

Legend  0.846 0.866 -0.048 

Surface 0.846  0.876 -0.049 

Lanes 0.866 0.876  -0.055 

 

Among the dataset used to develop the model, only 69 crashes are recorded and the crash 

severity is divided into four classifications, including no injury, possible injury, suspected minor 
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injury, and suspected serious injury. The crash severity rate of each level is demonstrated in 

Figure 5.1. Because the crash dataset is not big enough, the frequencies of higher crash severity 

levels are relatively low, which can affect the model’s accuracy in classifying more severe 

crashes. 

 

Figure 5.1  Crash frequency by severity levels 

5.3  Safety Model Development 

To evaluate the I-80 corridor’s safety performance, the SVM and ANN classification 

methods are used to predict the crash frequency and severity, respectively, using road and 

environment data. Since crash variables are with discrete classification values, classification 

multilayer perception (MLP) is used in this research. Then, the SVM classifier will predict the 

number of crashes per hour (e.g., 0, 1, etc.) and the ANN model will estimate the corresponding 

crash severity from level 1 (no injury) to the highest level (level 4). Notably, level 0 is also 

created to represent the hours without crashes. 

SVM is constructed from a set of hyperplanes that will classify the data. These 

hyperplanes can be linear or any other higher dimension functions. The most suitable hyperplane 

is the one that will maximize the distance from the closest data point in each class, which means 

the generalization error is minimized. Line classifiers are based on the margin maximization 
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principle (Adankon and Cheriet, 2009) to find the best function to classify the inputs. Depending 

on the number of features and input dimension, the hyperplane will be created with different 

complication levels. 

On the other hand, ANN is a framework created out of multiple layers, including the input 

layer, hidden layers, and output layers. The attributes are taken as input and fed to the next layers 

(hidden layers) with their corresponding weight and activation function in this approach. Then 

using the actual labels, the weights are adjusted. The weights and parameters of the function will 

be optimized using gradient descent optimization. The ANN framework is depicted in Figure 5.2, 

schematically.  

 

Figure 5.2  Schematic framework of ANN 

The original data are divided into a training set, testing set, and cross-validation set to 

train, evaluate, and validate the model. The ratios of the training set to the testing set and the 

cross-validation set are 3 and 2, respectively. After training the model based on input data and 

tuning the parameters, the best results are made by an SVM with radial basis function fore crash 

frequency prediction and a 4-layer ANN with 50 and 40 nodes in hidden layers for crash severity 

prediction. For the SVM model, occurrence data, weather index, and speed limit data are used 

for training. And for the ANN model, crash records features are used. Fitted model results show 



 

46 

a regression score function (r-squared) of 0.14 and 0.65 and the root of the mean square (RSME) 

of 0.087 and 0.083 for the SVM and ANN model, respectively. Other results are presented in 

Table 5.3 and Table 5.4. 

Table 5.3  SVM model safety evaluation performance metrics 

Frequency/Hr Precision Recall F1-Score Support 

0 0.99 1 1 3877 

1 0.83 0.22 0.34 23 

2 0 0 0 3 

Table 5.4  ANN safety evaluation performance metrics 

Class Precision Recall F1-Score Support 

Level 0 1 1 1 3877 

Level 1 0.69 1 0.82 18 

Level 2 0 0 0 5 

Level 3 0 0 0 1 

Level 4 0 0 0 2 

 

Since the ML model performance can be affected by random state and data split set, 5-fold 

cross-validation is also done which produces the following results. Performance metrics for each 

iteration are shown below. Cross-validation will divide the data set into ‘k’ subsets and train the 

model each time to remove the bias values in training. 

Table 5.5  SVM cross-validation performance results 

Iteration Accuracy MSE MAD R2 

1 0.993 0 0 0.044 

2 0.996 0 0 0.42 

3 0.995 0.16 0.16 0.138 

4 0.995 0 0 0.137 

5 0.994 0.02 0.21 0 

Average 0.9946 0.036 0.074 0.1478 
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Table 5.6 ANN cross-validation performance results 

Iteration Accuracy MSE MAD R2 

1 0.995 0 0.0059 0.44 

2 0.998 0 0.0017 0.81 

3 0.996 0.028 0.0034 0.59 

4 0.999 0 0.008 0.89 

5 1 0.002 0 1 

Average 0.9976 0.006 0.0038 0.746 

 

To show the effect of changing VSL legend color, the developed models are used to predict 

the number of crashes and crash severities under both conditions. Based on the model’s results 

tested on a set of data, both SVM and ANN models show a 0.99 accuracy and a low mean square 

error (i.e., 0.005 and 0.001). The heat maps of both models predicting the crash frequency and 

severity are depicted in Figure 5.3 and Figure 5.4. 

 

Figure 5.3  Heat map of crash frequency model 
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Figure 5.4  Heat map of crash severity model 

With the completion of the training and testing processes, this research further implements 

the two ML models to predict crash frequency and severity with different VSL legend colors. 

Results shown in Figure 5.5 show that with the new amber legend VSL, the number of crashes 

will be decreased by 80% and crash severity will be reduced by 8.26%. Such results further confirm 

the effectiveness of the amber legend VSLs in reducing both crash frequency and severity, with 

the improved visibility. 

 

Figure 5.5  Safety model estimation with both VSL legend colors 
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5.4  Summary 

In this chapter, I-80 VSL zone safety is modeled using traffic data and crash records. 

Leveraging ML techniques, the developed models can predict crash frequency and severity with 

high accuracy performances. Although the lack of sufficient severe crash records may result in 

lower prediction accuracy for higher severity crashes, the developed models can perform 

precisely for other classes. In addition, using the amber legend as a variable helps to study the 

relationship between safety and VSL sign visibility. Model results show a decline in both crash 

severity and frequency after installing VSLs with amber legends. 
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6.0  CONCLUSIONS 

6.1  Summary 

The objective of this research is to scrutinize the impact of changing VSL signs from 

white legend to amber legend on the I-80 corridor of the Parley’s Canyon area. To achieve this 

purpose, this research is started by reviewing VSL control algorithms and case applications. 

Information from existing studies helps identify the potential benefits of VSLs and highlight 

exceptional cases from the MUTCD. Thereafter, by investigating the historical traffic data and 

road condition data, driver compliance rates to VSL and the average traffic speed profiles before 

and after the installation of the new system are evaluated. Finally, by developing safety models, 

the crash data help create a framework that can appraise road safety considering the changes in 

VSL signs. 

6.2  Findings 

VSL signs have been used increasingly in North America based on variable traffic and 

weather conditions. VSL’s objective is to manage traffic with speed fluctuations by providing 

drivers with information and cautions concerning downstream status. A change in regular road 

geometry or flow patterns increases the need for precautionary signs such as VSLs to improve 

safety performance. Displayed speed limit by signs is regulated by the embedded algorithm in 

the system that considers the average flow’s speed, driving condition impacts, and road 

geometry. Recorded data by weather and visibility detectors installed on the road will also adjust 

the advised speed limit for enhanced safety when the VSL is implemented in corridors with 

severe climate. The dynamic speed limit assists drivers in adapting to changing road conditions 

while maintaining road safety.  

In a section of the I-80 freeway in Parley’s Canyon, Utah, VSL signs have been mounted 

as a response to reduced visibility from a harsh climate during cold seasons. As these signs are 

categorized as regulatory devices by MUTCD guidelines, hybrid signs with a white legend on a 

black background were installed originally. Reduced visibility in snowstorms during winter and 

strong sunlight during summer were motives to have the legend color changed from white legend 
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to amber. This transformation aims to increase the visibility of these signs to improve safety by 

enhancing driver adaptability to upcoming flow. This study collects onsite traffic detector data, 

weather radar data, and crash data to evaluate VSL system performance and its results in traffic 

operation before and after implementation of new signs. In the following sections, the 

conclusions of each task are provided. 

6.2.1  Literature and Case Studies  

By exploring the studies and research done on VSL applications, this research summarized 

the commonly adopted VSL algorithms. Also, VSL implementation cases have shown that an 

additional advisory system about driving conditions can enhance driving safety. Although the 

MUTCD states that VSL signs should have a white legend on a black background for regulatory 

signs, VSL signs have been used with the amber legend in corridors with low visibility due to 

recurring adverse conditions or work zones. Besides, safety evaluation literature is reviewed, 

which utilizes various safety models to assess road safety. Among developed methods, this 

research picked the ML models that can outperform other models in prediction accuracy.  

6.2.2  Visibility Based on Sign Recordings 

Since the start of the project, three rounds of field trips were conducted to record road 

videos in the VSL zone. Judging from the driver’s view, the amber legend makes drivers more 

alert about the speed limit, especially under lower visibility driving conditions. Another critical 

finding was the sight distance with an amber legend has increased, which provides drivers more 

time to respond to the speed limit. 

6.2.3  Corridor’s Operation Performance 

Based on the analysis performed on the recorded data, it can be concluded that safety and 

driver compliance rates have been enhanced due to the improved visibility of the new VSL signs. 

The decrease in traffic average speed and the increase of drivers’ tendency to follow the speed 

limit can be primarily attributed to the VSL legend’s change from white to amber. Furthermore, 

in winter, when higher precipitation results in a slippery road surface and reduced visibility, the 

driver compliance rate was increased. The reduction in crash rates also indicates improved VSL 

visibility directly mitigates the adverse effects of poor road and weather conditions. The detailed 
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description of crash data showed that most crashes occurred due to poor lighting conditions or 

slushy road surfaces in this corridor. The former conditions also hold for crashes that occurred in 

winter before and after the new VSL sign installations. Keeping in mind that comparisons were 

made with similar road conditions and months, the decline in crash numbers can be positively 

correlated with the improved visibility of the amber legends. 

6.2.4  Safety Evaluation Using ML 

To develop the safety models, traffic occurrence data, driving condition, and crash data 

were collected for model training. The correlation of input data demonstrated that safety factors 

are positively related to road and driving conditions. The transition from white legend VSLs to 

amber legend VSLs, as an input variable, can help study the impact of the improved sign 

visibility on traffic safety. Based on this relation, safety models were developed using the SVM 

and ANN classification methods. Performance evaluation of the models demonstrated high 

model accuracy in safety prediction. However, due to the limited number of records for higher 

crash severity, it does not show the same accuracy at those levels, although, the results of models 

in both conditions demonstrated lower crash records with the amber legend. Outcomes of safety 

models indicated that the new legend color improved the safety of the corridor by reducing crash 

frequency and severity. 

6.3  Limitations and Challenges 

Since this project started in Spring 2019 and the new signs were installed in Summer 

2019, the research team did not have a chance to record videos with white legend signs during 

cold seasons. However, before-and-after videos in summer were compared and VSL visibility 

was examined in winter. In addition, due to the project’s timeline, the summer data for the VSL 

zone with the amber legend were not pulled for further analysis and assessment. Despite most 

crashes occurring in cold seasons, summer data evaluation will provide a more comprehensive 

overview of the road’s performance.   

A broader range of data will improve the model’s precision for all levels of severity and 

frequency when developing the safety model. Most literature studies used at least 2 to 3 years of 



 

53 

data for reliable model development. Furthermore, this research suggests expanding a survey for 

drivers on the I-80 corridor to investigate the VSL’s visibility from a broader range of users. 
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